427 research outputs found

    Effect of the nonlinear material viscosity on the performance of dielectric elastomer transducers

    Get PDF
    As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging. In this thesis, by adopting the state-of-art modeling framework of finite-deformation viscoelasticity, the effects of nonlinear viscosity of the polymer chains on the oscillation and frequency tuning of DE membrane oscillators are firstly investigated. From the simulation results, it is found that the nonlinear viscosity only affects the transient state of the frequency tuning process of DE oscillators. Secondly, with both finite-deformation viscoelasticity and deformation-dependent viscosity of polymer chains considered, the energy conversion efficiency and harvested energy of dielectric elastomer generators under equi-biaxial loading are also examined. It is found that when a nonlinear viscosity model is used, DE generators appear to reach an equilibrium state faster and the nonlinear viscosity significantly influences the energy harvesting performance. The modeling framework developed in this work is expected to provide useful guidelines for predicting the performance of DE-based oscillators and energy harvesters as well as their optimal design

    Universal characteristics of one-dimensional non-Hermitian superconductors

    Full text link
    We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone (GBZ). The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect and their values of GBZ satisfy |\beta| = 1. If the non-Hermitian system has skin modes, these modes should be Z2 style, i.e., the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitian p- and s-wave topological superconductors. Topological phase transitions occur at \beta_{c}= \pm 1 in the two systems. In terms of Majorana Pfaffian, a Z2 non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence in non-Hermitian superconductors.Comment: 6 pages, 4 figure

    Pathologically Activated Neuroprotection via Uncompetitive Blockade of \u3cem\u3eN\u3c/em\u3e-Methyl-d-aspartate Receptors with Fast Off-rate by Novel Multifunctional Dimer Bis(propyl)-cognitin

    Get PDF
    Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists with fast off-rate (UFO) may represent promising drug candidates for various neurodegenerative disorders. In this study, we report that bis(propyl)-cognitin, a novel dimeric acetylcholinesterase inhibitor and γ-aminobutyric acid subtype A receptor antagonist, is such an antagonist of NMDA receptors. In cultured rat hippocampal neurons, we demonstrated that bis(propyl)-cognitin voltage-dependently, selectively, and moderately inhibited NMDA-activated currents. The inhibitory effects of bis(propyl)-cognitin increased with the rise in NMDA and glycine concentrations. Kinetics analysis showed that the inhibition was of fast onset and offset with an off-rate time constant of 1.9 s. Molecular docking simulations showed moderate hydrophobic interaction between bis(propyl)-cognitin and the MK-801 binding region in the ion channel pore of the NMDA receptor. Bis(propyl)-cognitin was further found to compete with [3H]MK-801 with a Ki value of 0.27 μm, and the mutation of NR1(N616R) significantly reduced its inhibitory potency. Under glutamate-mediated pathological conditions, bis(propyl)-cognitin, in contrast to bis(heptyl)-cognitin, prevented excitotoxicity with increasing effectiveness against escalating levels of glutamate and much more effectively protected against middle cerebral artery occlusion-induced brain damage than did memantine. More interestingly, under NMDA receptor-mediated physiological conditions, bis(propyl)-cognitin enhanced long-term potentiation in hippocampal slices, whereas MK-801 reduced and memantine did not alter this process. These results suggest that bis(propyl)-cognitin is a UFO antagonist of NMDA receptors with moderate affinity, which may provide a pathologically activated therapy for various neurodegenerative disorders associated with NMDA receptor dysregulation

    Metastable state of gas hydrate during decomposition: a novel phenomenon

    Get PDF
    Natural gas hydrates are solid compounds with cage-like structures formed by gas and water. An intriguing phenomenon that gas hydrates can dissociate at a low rate below the ice freezing point has been viewed as the metastability of hydrate. The mechanisms of hydrate metastability have been widely studied, and many mechanisms were proposed involving the self-preservation effect, supercooled water-gas-hydrate metastable equilibrium, and supersaturated liquid–gas-hydrate system etc. The metastable state of hydrate could be of crucial significance in the kinetics of hydrate formation and decomposition, heat and mass transfer during gas production processes, and the application of hydrate-based technique involving desalination, energy storage and transportation, and gas separation and sequestration. Few researches have systematically considered this phenomenon, and its mechanism remains unclear. In this work, various mechanisms and hypothesis explaining the metastable state of gas hydrates were introduced and discussed. Further studies are still required to reveal the intrinsic nature of this metastable state of gas hydrate, and this work could give some implications on the existing theory and current status of relevant efforts

    TLR3 Mediates Repair and Regeneration of Damaged Neonatal Heart through Glycolysis Dependent YAP1 Regulated miR-152 Expression

    Get PDF
    The present study investigated whether TLR3 is required for neonatal heart repair and regeneration following myocardial infarction (MI). TLR3 deficient neonatal mice exhibited impaired cardiac functional recovery and a larger infarct size, while wild type neonatal mice showed cardiac functional recovery and small infarct size after MI. The data suggest that TLR3 is essential for the regeneration and repair of damaged neonatal myocardium. In vitro treatment of neonatal cardiomyocytes with a TLR3 ligand, Poly (I:C), significantly enhances glycolytic metabolism, YAP1 activation and proliferation of cardiomyocytes which were prevented by a glycolysis inhibitor, 2-deoxyglucose (2-DG). Administration of 2-DG to neonatal mice abolished cardiac functional recovery and YAP activation after MI, suggesting that TLR3-mediated regeneration and repair of the damaged neonatal myocardium is through glycolytic-dependent YAP1 activation. Inhibition of YAP1 activation abolished Poly (I:C) induced proliferation of neonatal cardiomyocytes. Interestingly, activation of YAP1 increases the expression of miR-152 which represses the expression of cell cycle inhibitory proteins, P27kip1 and DNMT1, leading to cardiomyocyte proliferation. We conclude that TLR3 is required for neonatal heart regeneration and repair after MI. The mechanisms involve glycolytic-dependent YAP1 activation, resulting in miR-152 expression which targets DNMT1/p27kip1
    corecore